WHY TRUE SCIENCE IS ONLY OPEN SCIENCE

Dr. Pandelis Perakakis
@ppandelis – peraka@ugr.es
Mind, Brain and Behaviour Research Centre (CIMCYC), University of Granada
Co-founder of Open Scholar http://www.openscholar.org.uk/
The brain is a scientist!
The scientific method is a fundamental process that evolved as the optimal strategy for the survival of the individual.
Doubt & Fear
Just Ahead
Humanity’s collective effort to minimise uncertainty
Open-minded scepticism
A scientist has no investment in the outcome of the experiment.
THE EVOLUTION OF ACADEMIA

Publish

Publish or Perish

Publish in High Impact Journals or Perish

Publish Frequently in High Impact Journals and Maybe You Won’t Perish

Facebook.com/pedromics
Profit Margins: Journal Publishers v. Other Companies

- Book Pub. Industry (avg.)*: 5.5%
- Book Pub. Industry (avg.): 5.8%
- eBay: 7.2%
- Walmart: 13.1%
- AT&T: 16.5%
- McDonald’s: 22.1%
- Apple: 26.4%
- Disney: 30.6%
- Elsevier (Ac&Sci only): 31.7%
- Elsevier (STM only): 36.7%
- Springer (STM only): 37.0%

Data from 2007 or 2008.
*Adjusted Operating Margin
Data Source: MIT Libraries
**RMA Annual Statement Studies, 2007
<table>
<thead>
<tr>
<th>Scientist</th>
<th>Academic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open-minded</td>
<td>Content journal editors</td>
</tr>
<tr>
<td>Sceptical</td>
<td>No replications or negative results</td>
</tr>
<tr>
<td>Consider all data</td>
<td>Inaccessible articles, data, software code</td>
</tr>
<tr>
<td>Collaborate</td>
<td>Compete for scarce resources</td>
</tr>
<tr>
<td>No investment in the outcome</td>
<td>p-hacking</td>
</tr>
<tr>
<td>GOLD</td>
<td>GREEN</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Create or convert 23,000 open-access journals</td>
<td>Persuade the authors of the annual 2,500,000 articles they publish in the</td>
</tr>
<tr>
<td></td>
<td>existing toll-access journal to also self-archive them in their institutional</td>
</tr>
<tr>
<td></td>
<td>open-access archives</td>
</tr>
<tr>
<td>Find funding support for open-access publication costs</td>
<td>Persuade the authors of the annual 2,500,000 articles to publish in new open-access journals instead of the existing toll-access journals</td>
</tr>
</tbody>
</table>
Whatever one may think about the relative merits of Green and Gold OA (a matter that my colleagues on the Kitchen and myself have discussed numerous times) or the economic implications of embargoes of various lengths, what is clear is that Green OA has no promise of delivering augmented revenues to the publisher, but Gold OA opens up a new customer, the author him or herself, who in many instances pays for the article to be OA. Gold OA, in other words, represents a business opportunity, whereas Green OA represents a business problem.

Thus we have the emergence of a relatively new market, where publishers fight to collect fees from this new class of customers: authors. How to compete is another matter. Most traditional publishers rely on the strength of their brands to bring the articles in. This is most obvious in cascading peer review, where the established publication represents the wide end of the marketing funnel and the Gold OA venues sit at the narrow end. (It’s worth remembering that this model works for purely toll-access publications as well, as the enormous success of Nature’s line-extension proves.) Other publishers focus on metrics of different kinds and boast of their Web-friendly tools for submission, discovery, and dissemination. As one would expect, wherever there is competition, the matter of pricing comes up. And here the established publisher may have a problem.
The peer review drugs don’t work

A process at the heart of science is based on faith rather than evidence, says Richard Smith, and vested interests keep it in place.

Peer review is supposed to be the quality assurance system for science, weeding out the scientifically unreliable and reassuring readers of journals that they can trust what they are reading. In reality, however, it is ineffective, largely a lottery, anti-innovatory, slow, expensive, wasteful of scientific time, inefficient, easily abused, prone to bias, unable to detect fraud and irrelevant.

Perhaps the biggest argument against the peer review of completed studies is that it simply isn’t needed. With the World Wide Web everything can be published, and the world can decide what’s important and what isn’t. This proposition strikes terror into many hearts, but with so much poor-quality science published what do we have to lose?

Richard Smith, former British Medical Journal editor

May 28, 2015
Science publishing: The trouble with retractions

A surge in withdrawn papers is highlighting weaknesses in the system for handling them.

Richard Van Noorden

RISE OF THE RETRACTIONS

In the past decade, the number of retraction notices has shot up 10-fold (top), even as the literature has expanded by only 44%. It is likely that only about half of all retractions are for researcher misconduct (middle). Higher-impact journals have logged more retraction notices over the past decade, but much of the increase during 2006–10 came from lower-impact journals (bottom).
Misconduct accounts for the majority of retracted scientific publications

Ferric C. Fanga,b,1, R. Grant Steenc,1, and Arturo Casadevalld,1,2
Estimating the reproducibility of psychological science

Open Science Collaboration*†

*All authors with their affiliations appear at the end of this paper.
††Corresponding author. E-mail: nosek@virginia.edu

Science 28 Aug 2015:
Vol. 349, Issue 6251,
DOI: 10.1126/science.aac4716
Reproducibility of peer review in clinical neuroscience: Is agreement between reviewers any greater than would be expected by chance alone?

Peter M. Rothwell, Christopher N. Martyn

DOI: http://dx.doi.org/10.1093/brain/123.9.1964 1964-1969 First published online: 1 September 2000
Drug development: Raise standards for preclinical cancer research

C. Glenn Begley & Lee M. Ellis

85 per cent of preclinical studies could not be replicated

Building a stronger system

What reasons underlie the publication of erroneous, selective or irreproducible data? The academic system and peer-review process tolerates and perhaps even inadvertently encourages such conduct. To obtain funding, a job, promotion or tenure, researchers need a strong publication record, often including a first-authored high-impact publication. Journal editors, reviewers and grant-review committees often look for a scientific finding that is simple, clear and complete — a 'perfect' story. It is therefore tempting for investigators to submit selected data sets for publication, or even to massage data to fit the underlying hypothesis.

Nature 483, 531–533 (29 March 2012) | doi:10.1038/483531a
Published online 28 March 2012
Rejecting and resisting Nobel class discoveries: accounts by Nobel Laureates

JUAN MIGUEL CAMPANARIO

Departamento de Física, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain

I review and discuss instances in which 19 future Nobel Laureates encountered resistance on the part of the scientific community towards their discoveries, and instances in which 24 future Nobel Laureates encountered resistance on the part of scientific journal editors or referees to manuscripts that dealt with discoveries that later would earn them the Nobel Prize.
<table>
<thead>
<tr>
<th>Title:</th>
<th>Towards a unified paradigm for sequence-based identification of fungi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors:</td>
<td>Köljalg, Urmas; Dueñas, Margarita; Martín, María P.; Tellería, Mª Teresa; Larsson, Karl-Henrik</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Bioinformatics, DNA barcoding, Ecological genomics, Fungi, Microbial diversity</td>
</tr>
<tr>
<td>Issue Date:</td>
<td>2013</td>
</tr>
<tr>
<td>Publisher:</td>
<td>Wiley-Blackwell</td>
</tr>
<tr>
<td>Citation:</td>
<td>Molecular Ecology 22(21): 5271-5277 (2013)</td>
</tr>
</tbody>
</table>
Researcher page at DIGITAL.CSIC

Reputation as author: 90

Reputation as reviewer: 75

Profile

Foto:

Firma en Digital.CSIC (*):

Otras firmas:

Centro o Instituto:

Apellido, Nombre

Apellido, N.

Apellido Apellido, Nombre

Apellido Apellido, N.

Centro / Instituto CSIC
Novel processes and metrics for a scientific evaluation rooted in the principles of science

Michaël Bon¹, Michael Taylor², Gary S McDowell³,⁴

Authors' affiliations
1. SJ - The Self-Journals of Science
2. Department of Physics – Aristotle University of Thessaloniki
3. The Future of Research, Inc.
4. ManyLabs (www.manylabs.org)